
CIDSS: Common Intrusion Detection Signatures Standard 
 

Adam Wierzbicki, Jacek Kaliński and Tomasz Kruszona 
Polish-Japanese Institute of Information Technology 

 
 

Introduction 
 
Intrusion Detection Systems (IDS) are controlled by decision rules (signatures), which 
contains technical description of intrusion accident and action that must be taken when this 
intrusion occur (e.g. send an email, write to system log). 
Nowadays, there are a lot of IDS: commercial as well as open source. 
Choosing the suitable IDS, configuration and management is a very hard and responsible task 
because each of well known system is using theirs own signatures standard. 
 
In 2003 year process of creating standard has been launched to exchange information between 
different IDS. An Internet Engineering Task Force (IETF) working group (IDWG, Intrusion 
Detection Working Group) standardized that mechanism. 
But still there was no tries to create a standard of IDS signatures. Because there is no common 
standard, administrators who know one system must learn other IDS from the beginning. This 
is common situation, because administrators usually start with the Snort (most popular open 
source IDS). When they get a job in a company, which have a commercial IDS, they just have 
to learn a new one. Similar situations we can find when we change a job or when we are 
implementing a new Intrusion Detection System in our company.  
Also there is a problem when independent institutions would like to do an audit of IDS. 
Because signatures are not standardized an audit becomes very hard or even it is impossible to 
realize. In this kind of audit it is necessary to analyze signatures. But lets try to compare 
signatures when you don’t know a format of signatures of different IDS’s. The same difficulty 
is when a company will try to integrate different (maybe inherited?) Intrusion Detections 
Systems in common security policy. 
 
Common Intrusion Detection System Signatures 
 
Meanwhile, a main part of signature (especially systems specializing in network data analysis) 
is similar in various systems. We can try to translate signatures automatically, but we have 
already checked that some IDS signatures cannot be translated from one system to another. 
No standard in this category cause signatures to be translated between themselves (different 
IDS). 
Additionally, translation is hard because in most cases there is no detailed signatures 
specification. 
 
In 2004 we have appeared proposal to create a standard in signatures format – Common 
Intrusion Detection Signatures Standard (CIDSS) submitted to IETF [1] as an Internet Draft. 
Currently it is third (draft-wierzbicki-cidss-02) version of an Internet Draft. The process of 
standardization can allow improving standard and creating tools for automatic signatures 
translating, especially with cooperation with IDS authors. CIDSS is based on Extensible 
Markup Language (XML), so it is ready to automatically parse, verify and extend signatures. 
An XML signatures are human-readable and easier to analyze than rules of other IDSs. 
 



Our standard is based on experiences when we were trying to translate signatures 
automatically between various systems and is a "sum" of possibilities expressing information 
about intrusion accidents. CIDSS could be an introduction to write tools for automatic 
translations [2]. SigTranslator has been written in parallel with standard and is currently 
supporting IDS: Snort, Dragon, Shoki and RealSecure with partial translating support. Full 
translation some of signatures to other system (e.g. Snort to Dragon) is impossible (due to 
limitations in Dragon signatures), but all signatures could be translated to CIDSS. 
 
Because we want to integrate various signature standards, CIDSS is now the most extensible 
language that can describe network intrusions. Supporting Snort signatures make CIDSS to 
implement features such as stateful rules. In effect it is necessary to make CIDSS more 
flexible and extensible.  
 
Example of CIDSS signature 
 
As an example of CIDSS signature, lets analyze the following situation: we got information 
that from our network there was an attempt of communication between client and TFN (Tribe 
Flood Network) daemons. Client is installed inside our network and it tries to communicate 
with hosts from 83.0.0.0/8  and 84.0.0.0/8  networks and with host 
194.154.2.142 . We would like to know which host from our network is a TFN client. A 
client can communicate with other daemons to start remote attack. Daemons on compromised 
hosts respond on client requests for open shell with ICMP response no.123, sequence number 
0 and string “shell bound to port ”. IDS should send alert to administrator (or 
generate appropriate log entry).  
 
Here is a sample CIDSS rule creation process. 
Most external tag Signatures  is opening the rule set. Each rule resides in Signature  
mark. In every Signatures  tag there could be one or more Signature  tags. In 
conclusion CIDSS document contains one or more independent rules. Template can look like 
this: 

 
  Diagram1 Signature and Signatures tags. 
 
Enabled  tag defines which of rules included in Signatures  should be considered active 
by IDS (which signature is enabled).  
 
In each rule we must define used protocol and characteristics of a protocol. Protocol tags 
depends on protocol type as described in Internet Draft [1]. E.g. for ICMP we can define 
ICMP packets type. In this sample, value of ICMP_Itype  is 0, so rule matches all ICMP 
types.  
 

<?xml version="1.0" encoding="UTF-8" ?> 
<Signatures xmlns:xsi= "http://www.w3.org/2001/XMLSchema-
instance"  xsi:noNamespaceSchemaLocation= "common.xsd" > 
  <Signature sid= "RULE_NUMBER"> 
    <Enabled>true</Enabled> 
  </Signature> 
</Signatures> 

 



 
  Diagram2 Protocol information 
 
As shown above, Protocols  tag contains one Protocol  tag, but if rule applies to more 
than one protocol then it can contain more Protocol  tags – e.g. information for UDP or 
TCP protocol. Then Protocols  tag could looks like: 

 
  Diagram3 How to use multiple protocol tags 
 
It is similar when we define source (Source ) and destination (Destination ) of potential 
attack – it is possible to describe more then on source and destination in each rule. In our 
example rule we know there could be any destination (any IP address – TFN client) and 
source are hosts with prefix 83  or 84  or host with 194.154.2.142  address (TFN 
daemons).  

<Signatures xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation= "common.xsd" > 
  <Signature sid= "RULE_NUMBER"> 
     <Enabled>true</Enabled> 
     <Protocols> 
       <Protocol Type="icmp"> 
         <ICMP_Icmp_Id>123</ICMP_Icmp_Id> 
         <ICMP_Icmp_Seq>0</ICMP_Icmp_Seq> 
         <ICMP_Itype>0</ICMP_Itype> 
       </Protocol> 
     </Protocols> 
  </Signature> 
</Signatures> 
 

     <Protocols> 
       <Protocol Type="tcp"> 
         <TCP_Ack>0</TCP_Ack> 
         <TCP_Window>34000</TCP_Window> 
       </Protocol> 
       <Protocol Type="udp"> 
         <UDP_Dsize>40000</UDP_Dsize> 
       </Protocol> 
     </Protocols> 



 
  Diagram 4 Source and destination description 
 
Lets we have a look at Src_Logic  tag. When there is more then one Source  tag, we can 
use logical expression to define dependencies between sources. We used in our example an 
alternative because we want to match any of sources. There can be used even complex logical 
expression with one of the keywords: AND, OR, NOT  and brackets. We can handle 
Destinations , Protocols , Patterns  tags the same way as Sources . Patterns  
tag is one of the most important tags in whole signature. It contains Pattern  tags which are 
describing packets using particular pattern. For now, supported pattern types are: PCRE 
expression, string, decimal and hexadecimal value. This is how our rule looks like with use of 
Patterns : 

 
  Diagram5 Patterns content in a signature 
 

<Signatures xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation= "common.xsd" > 
  <Signature sid= "NR_REGULY"> 
    <Enabled>true</Enabled> 
    <Protocols>...</Protocols> 
    <Sources>...</Sources> 
    <Destinations>...</Destinations> 
    <Patterns id= "1" > 
      <Pattern pat_id= "1" > 
        <Pattern_Type>string </Pattern_Type> 
        <Pattern_Content CaseSensitive= "true" >shell bound to \ 
        port </Pattern_Content> 
        <Pattern_Offset>36</Pattern_Offset> 
      </Pattern> 
    </Patterns> 
  </Signature> 
</Signatures> 

 

<Signatures xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation= "common.xsd" > 
  <Signature sid= "NR_REGULY"> 
    <Enabled>true</Enabled> 
    <Protocols>...</Protocols> 
    <Sources> 
      <Source Src_ID="1"> 
       <Source_IP Neg="false" Mask="8">83.0.0.0</Source_IP> 
      </Source> 
      <Source Src_ID="2"> 
       <Source_IP Neg="false" Mask="8">84.0.0.0</Source_IP> 
      </Source> 
      <Source Src_ID="3"> 
       <Source_IP Neg="false" Mask="32">194.154.2.142</Source_IP> 
      </Source> 
      <Src_Logic>1 OR 2 OR 3</Src_Logic> 
    </Sources> 
    <Destinations> 
      <Destination Dst_ID="1"> 
          <Destination_IP>any</Destination_IP> 
      </Destination> 
    </Destinations> 
  </Signature> 
</Signatures> 



Look, we can define at which offset from the end of packet header, we should look for 
specific pattern. This is possible using a Pattern_Offset  tag. 
 
Last we can define an action of rule and describe whole signature: 

 
  Diagram6 Message, action, source of rule and rule description 
 
Using Messsage , Comment or Description  tags we can easily and precisely describe 
our rule. Sig_Source  contains information about source of translation for the particular 
signature. 
 
Rule analyzed above has been created as a result of translation from Snort IDS. Next it was 
translated to Shoki and Dragon rules: 

 
  Diagram7 Equivalent rules for Snort, Shoki and Dragon 
 
As you can see, rules used in IDS are much shorter than CIDSS. But it is the only one 
advantage. They are not human-readable, and we can make a mistake during creating or 
modifying signatures. On shown example we can see problem with manual translations from 
various IDS: this rules are not comparable, but contains the same information! For example, 
we want to do an external audit. If people who do this audit know well Snort system, he will 
probably have troubles with Dragon or Shoki IDS. Even we have experts which know all of 
this systems, probability to make a mistake is increasing significantly during comparison IDS 

Snort: 
alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg: "DDOS TFN 
server response"; icmp_id:123; icmp_seq:0; itype:0;  
content:"shell bound to port"; reference:arachnids, 182; 
classtype:attempted-dos; sid:238; rev:6;)  

Dragon: 
I D F B 10 0 0 IDS182:ddos_ddos-tfn-server-response  
shell/2f20bound/2f20to/2f20port  

Shoki: 
icmp and (icmp[4:2] == 123) 65536 SEARCH IDS182 ddo s_ddos-tfn-
server-response 'shell bound to port' ALL 1 NULL  

 

<Signatures xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation= "common.xsd" > 
  <Signature sid= "NR_REGULY"> 
    <Enabled>true</Enabled> 
    <Sig_source>Snort </Sig_source> 
    <Description>DDOS TFN server response </Description> 
    <Action>alert </Action> 
    <Protocols>...</Protocols> 
    <Sources>...</Sources> 
    <Destinations>...</Destinations> 
    <Patterns id="1" >...</Patterns> 
    <Message>DDOS TFN server response </Message> 
    <Comment>reference:arachnids,182 </Comment> 
    <Comment>classtype:attempted-dos </Comment> 
    <Comment>rev:6 </Comment> 
  </Signature> 
</Signatures> 

 



rules used in a company with schemas written for other systems. Doing an audit will be 
possible only when have sample rules for different IDS. 
 
Signatures and sessions 
 
Currently the only one IDS that support stateful rules is Snort. Under the term of stateful 
sessions we understand that packets processed by system are considered in context of packets 
previously processed. Snort interpretation of stateful rules is limited to protocols of transport 
layer (UDP or TCP). Using session we are able to describe more complex types of attacks. 
Such attacks like port scanning can be invisible for IDS that doesn't take session state in 
consideration. Snort will have problems with detection of slow port scanning from different 
sources. It cannot analyze packet flow that doesn't start from transport protocol (e.g. malicious 
routing modification attempts). 
In Snort multiple rules can be related through session state. Rules are related by operations 
made on particular session variables (checking and modifying a value of variables) 
CIDSS is able to define signatures containing sessions in wide meaning – it considers state of 
packet flows of any protocol. So, it is also possible to translate Snort stateful signature to 
CIDSS signature.  
On diagram8 we can see example rule containing Session  tag and considers session state. 
On this example we would like to explain how tags describe above work. Lets imagine that 
attacker is trying to make a DoS attempt using Microsoft RPC service. He is sending multiple 
requests to make system vulnerable. It takes all system resources. System after detecting 
attack attempt should correctly react. 
Source_IP  and Destination_IP  tags contains $EXTERNAL_NET and $HOME_NET 
values that are specific values defined in IDS. IDS have possibility to define in configuration 
files or in system environment such values, so CIDSS is capable to use them too. In our 
example we use also Pattern  and Pat_Logic  tags. 
We will explain meaning of these tags in example from diagram8. First tag in Session  
section is Session_End , which describes conditions for ending session. Session ends after 
60 seconds as Session_Timeout  defines, or after 20 packets from start of session. After 
session end a packet counter is zeroed so in 60 seconds 20 packets must match the rule 
(conditions defined in signature). Moreover, packets in session must match additional 
conditions defined by Session_Case  (contained in Session_Instructions ). First 
tag (Direction ) defines direction of packets counted into session – from source (host 
starting session) to destination. Condition described in Case_State_Condition  applies 
to session variables. In this case variable dce.isystemactivator.bind.call.attempt must be set by 
another signature.  
To modify variable values we can use Case_State_Instructions  tag. 



 
  Diagram8 CIDSS stateful signature 

<Signature sid ="2494 "> 
 <Enabled>true </Enabled>  
 <Sig_source>Snort </Sig_source>  
 <Description>NETBIOS DCEPRC ORPCThis request flood 
attempt </Description>  
 <Action>alert </Action>  
 <Protocols><Protocol Type="tcp "> 
   <TCP_State>established </TCP_State>  
 </Protocol> </Protocols> 
 <Sources><Source src_id ="1"> 
  <Source_IP>$EXTERNAL_NET</Source_IP>  
  <Source_Port>any</Source_Port>  
 </Source></Sources> 
 <Destinations><Destination dst_id ="1"> 
  <Destination_IP>$HOME_NET</Destination_IP>  
  <Destination_Port>135</Destination_Port>  
 </Destination></Destinations> 
 <Patterns id ="1"> 
  <Pattern pat_id ="1"> 
   <Pattern_Type>hex</Pattern_Type>  
   <Pattern_Content>05</Pattern_Content>  
   <Pattern_Within>1</Pattern_Within>  
  </Pattern> 
  <Pattern pat_id ="2"> 
   <Pattern_Type>hex</Pattern_Type>  
   <Pattern_Content>00</Pattern_Content>  
   <Pattern_Within>1</Pattern_Within>  
   <Pattern_Distance>1</Pattern_Distance>  
 <Pattern_Byte_test><![CDATA[1, &, 1, 0, relative ]]></Pattern_Byte_test> 
  </Pattern> 
  <Pattern pat_id ="3">...</Pattern> 
  <Pattern pat_id ="4">...</Pattern> 
  <Pat_Logic>1 AND 2 AND 3 AND 4 </Pat_Logic>  
 </Patterns> 
 <Message>NETBIOS DCEPRC ORPCThis request flood attempt </Message>  
 <Session> 
  <Session_End> 
   <Session_Timeout>60s</Session_Timeout>  
   <Session_Pckt_Count>20</Session_Pckt_Count>  
   <Session_Threshold> 
    <Session_Threshold_Type>both </Session_Threshold_Type>  
    <Session_Threshold_Track>dst </Session_Threshold_Track>  
   </Session_Threshold> 
  </Session_End> 
  <Session_Instructions> 
   <Session_Case> 
    <Direction>sd</Direction>  
    <Case_State_Condition> 
     <Isset_Var var ="dce.isystemactivator.bind.call.attempt " />  

    </Case_State_Condition> 
   </Session_Case> 
  </Session_Instructions> 
 </Session> 
</Signature> 
 



 
Snort rule shown below is equal with CIDSS rule from (Diagram8): 

 
  Diagram9 Snort stateful signature 
 
Summary 
Signatures standard should be used for improving security of information systems. CIDSS 
may be used by IT administrators for translating, moving, analyzing different signatures from 
various manufacturers. There are many other possibilities. CIDSS makes easier to develop 
analysis and audit tools. Moreover it is possible to develop knowledge bases containing 
precise and easy-to-implement vulnerabilities information expressed as signatures in common 
format. Such databases could be maintained by independent developers. They could sell 
access to most recent and tested signatures selected to fit clients need. Other possibility of use 
of CIDSS is to make it standard language for self-learning (intelligent) systems used in 
different categories of information security. It is so special usages, because CIDSS is 
currently language that has more functionality from Snort.  
 
 
 
 
[1] Internet Engineering Task Force, Internet Draft, Common Intrusion Detection Signatures 
Standard, http://www.ietf.org 
 
[2] IDS Signature Translator (2005), http://sigtranslator.sourceforge.net 
 
[3] Snort User Manual, http://www.snort.org/docs/ 
 
 

alert tcp $EXTERNAL_NET any -> $HOME_NET 135  
(msg:"NETBIOS DCEPRC ORPCThis request flood attempt "; 
flow:to_server,established; content:"|05|"; within: 1; 
content:"|00|"; within:1; distance:1; byte_test:1,& ,1,0,relative; 
content:"|05|"; within:1; distance:21; content:"MEO W"; 
flowbits:isset,dce.isystemactivator.bind.call.attem pt; 
threshold:type both, track by_dst, count 20, second s 60; 
reference:cve,CAN-2003-0813; 
reference:url,www.microsoft.com/technet/security/bu lletin/MS04-
011.mspx; classtype:misc - attack; sid:2494; rev:3;)  


