CIDSS: Common Intrusion Detection Signatures Stethda

Adam Wierzbicki, Jacek Kalinski and Tomasz Kruszona
Polish-Japanese I nstitute of Information Technology

| ntroduction

Intrusion Detection Systems (IDS) are controlleddbgision rules (signatures), which
contains technical description of intrusion acctdmmd action that must be taken when this
intrusion occur (e.g. send an email, write to Syskeg).

Nowadays, there are a lot of IDS: commercial as asbpen source.

Choosing the suitable IDS, configuration and maneagd is a very hard and responsible task
because each of well known system is using thews signatures standard.

In 2003 year process of creating standard has laeeched to exchange information between
different IDS. An Internet Engineering Task Fort€T{F) working group (IDWG, Intrusion
Detection Working Group) standardized that mechmanis

But still there was no tries to create a stand&l®8 signatures. Because there is no common
standard, administrators who know one system neashlother IDS from the beginning. This
IS common situation, because administrators uss#diy with the Snort (most popular open
source IDS). When they get a job in a company, Wwh&ve a commercial IDS, they just have
to learn a new one. Similar situations we can filetn we change a job or when we are
implementing a new Intrusion Detection System in@ampany.

Also there is a problem when independent institigiovould like to do an audit of IDS.
Because signatures are not standardized an awdities very hard or even it is impossible to
realize. In this kind of audit it is necessary talgze signatures. But lets try to compare
signatures when you don’t know a format of signeduof different IDS’s. The same difficulty
is when a company will try to integrate differentgybe inherited?) Intrusion Detections
Systems in common security policy.

Common Intrusion Detection System Signatures

Meanwhile, a main part of signature (especiallyays specializing in network data analysis)
is similar in various systems. We can try to trateskignatures automatically, but we have
already checked that some IDS signatures cannimabsglated from one system to another.
No standard in this category cause signatures tcahslated between themselves (different
IDS).

Additionally, translation is hard because in mases there is no detailed signatures
specification.

In 2004 we have appeared proposal to create assthimdsignatures format — Common
Intrusion Detection Signatures Standard (CIDSS)rstied to IETF [1] as an Internet Draft.
Currently it is third (draft-wierzbicki-cidss-02gvsion of an Internet Draft. The process of
standardization can allow improving standard ameiong tools for automatic signatures
translating, especially with cooperation with ID@heors. CIDSS is based on Extensible
Markup Language (XML), so it is ready to automdticparse, verify and extend signatures.
An XML signatures are human-readable and easianatyze than rules of other IDSs.

Our standard is based on experiences when we wyang to translate signatures
automatically between various systems and is a "stinossibilities expressing information
about intrusion accidents. CIDSS could be an intetidn to write tools for automatic
translations [2]. SigTranslator has been writtepanallel with standard and is currently
supporting IDS: Snort, Dragon, Shoki and RealSeuwuiitte partial translating support. Full
translation some of signatures to other system 8ngrt to Dragon) is impossible (due to
limitations in Dragon signatures), but all signaticould be translated to CIDSS.

Because we want to integrate various signaturelatds, CIDSS is now the most extensible
language that can describe network intrusions. &uimg Snort signatures make CIDSS to
implement features such as stateful rules. In effes necessary to make CIDSS more
flexible and extensible.

Example of CIDSS signature

As an example of CIDSS signature, lets analyzddi@wving situation: we got information

that from our network there was an attempt of comication between client and TEN (Tribe
Flood Network) daemons. Client is installed insidie network and it tries to communicate
with hosts fron83.0.0.0/8 and84.0.0.0/8 networks and with host

194.154.2.142 . We would like to know which host from our netwaska TFN client. A
client can communicate with other daemons to stanbte attack. Daemons on compromised
hosts respond on client requests for open shdtl MUMP response no.123, sequence number
0 and string $hell bound to port ”. IDS should send alert to administrator (or
generate appropriate log entry).

Here is a sample CIDSS rule creation process.
Most external tagignatures is opening the rule set. Each rule resideSignature
mark. In everySignatures tag there could be one or m@mgnature tags. In

conclusion CIDSS document contains one or morep@deent rules. Template can look like
this:

<?xm version="1.0" encoding="UTF-8" ?>
<Si gnat ur es xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-
instance” xsi:noNamespaceSchemalocation= "common.xsd" >

<Si gnat ur e sid= "RULE_NUMBER*
<Enabl ed>t r ue</ Enabl ed>
</ Si gnat ur e>
</ Si gnat ur es>

Diagraml1 Signature and Signaturestags.

Enabled tag defines which of rules included$ignatures should be considered active
by IDS (which signature is enabled).

In each rule we must define used protocol and ciewiatics of a protocol. Protocol tags
depends on protocol type as described in Internaft [1]. E.g. for ICMP we can define
ICMP packets type. In this sample, valud@MP _Itype is 0, so rule matches all ICMP
types.

<Si gnhat ur es xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation= "common.xsd" >
<Si gnat ur e sid= "RULE_NUMBER*
<Enabl ed>t r ue</ Enabl ed>
<Pr ot ocol s>
<Prot ocol Type="icnp">
<ICVP_lcnp_|d>123</ 1 CMP_lcnp_I d>
<I CVP_Il cnp_Seq>0</1 CVP_I cnp_Seq>
<I CVP_I type>0</1CVP_I type>
</ Pr ot ocol >
</ Prot ocol s>
</ Si gnat ur e>
</ Si gnat ur es>

Diagram2 Protocol infor mation

As shown aboveRrotocols tag contains onBrotocol tag, but if rule applies to more
than one protocol then it can contain mBretocol tags — e.g. information for UDP or
TCP protocol. Therotocols tag could looks like:

<Pr ot ocol s>
<Protocol Type="tcp">
<TCP_Ack>0</ TCP_Ack>
<TCP_W ndow>34000</ TCP_W ndow>
</ Prot ocol >
<Prot ocol Type="udp">
<UDP_Dsi ze>40000</ UDP_Dsi ze>
</ Prot ocol >
</ Prot ocol s>

Diagram3 How to use multiple protocol tags

It is similar when we define sourc8durce) and destinationestination) of potential
attack — it is possible to describe more then amand destination in each rule. In our
example rule we know there could be any destingaony IP address — TFN client) and
source are hosts with pre#®8 or 84 or host with194.154.2.142 address (TFN

daemons).

<Si gnhat ur es xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation= "common.xsd" >
<Si gnat ur e sid= "NR_REGULY'>
<Enabl ed>t r ue</ Enabl ed>
<Protocol s>...</Protocol s>
<Sour ces>
<Source Src_ID="1">
<Source_| P Neg="fal se" Mask="8">83.0.0.0</ Source_| P>
</ Sour ce>
<Source Src_|ID="2">
<Source_| P Neg="fal se" Mask="8">84.0.0.0</ Source_| P>
</ Sour ce>
<Source Src_ID="3">
<Source_| P Neg="fal se" Mask="32">194. 154. 2. 142</ Source_| P>
</ Sour ce>
<Src_Logic>1 OR 2 OR 3</Src_Logic>
</ Sour ces>
<Desti nati ons>
<Destination Dst_ID="1">
<Desti nati on_| P>any</ Destination_I P>
</ Desti nati on>
</ Destinations>
</ Si gnat ur e>
</ Si gnat ur es>

Diagram 4 Sour ce and destination description

Lets we have a look &rc_Logic tag. When there is more then deurce tag, we can

use logical expression to define dependencies leetweurces. We used in our example an
alternative because we want to match any of souldese can be used even complex logical
expression with one of the keywordgd) OR NOT and brackets. We can handle
Destinations , Protocols , Patterns tags the same way 8®urces . Patterns

tag is one of the most important tags in whole &igre. It contain®attern tags which are
describing packets using particular pattern. Fav,rsupported pattern types are: PCRE
expression, string, decimal and hexadecimal valbes is how our rule looks like with use of
Patterns

<Si gnhat ur es xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation= "common.xsd" >
<Si gnat ur e sid= "NR_REGULY'>
<Enabl ed>t r ue</ Enabl ed>
<Protocol s>...</Protocol s>
<Sour ces>. .. </ Sour ces>
<Desti nations>...</Destinations>
<Patternsid= "1" >
<Patternpat_id= "1" >
<Pattern_Type>string </ Pattern_Type>
<Pat t er n_Cont ent CaseSensitive= "true" >shell bound to\
port </ Pattern_Content >
<Pattern O fset >36</Pattern_O fset >
</ Pattern>
</ Patterns>
</ Si gnat ur e>
</ Si gnat ur es>

Diagramb Patterns content in a signature

Look, we can define at which offset from the engbatket header, we should look for
specific pattern. This is possible usinBattern_Offset tag.

Last we can define an action of rule and describel&signature:

<Si gnhat ur es xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation= "common.xsd" >
<Si gnat ur e sid= "NR_REGULY'>
<Enabl ed>t r ue</ Enabl ed>
<Si g_sour ce>Snort </ Si g_sour ce>
<Descri pti on>DDOS TFN server response </ Descri ption>
<Act i on>alert </Action>
<Protocol s>...</Protocol s>
<Sour ces>. .. </ Sour ces>
<Desti nations>...</Destinations>
<Patternsid="1" >...</Patterns>
<Message>DDOS TFN server response </ Message>
<Conment >reference:arachnids, 182 </ Comrent >
<Comment >classtype:attempted-dos </ Conment >
<Comment >rev:6 </ Comrent >
</ Si gnat ur e>
</ Si gnat ur es>

Diagram6 M essage, action, sour ce of rule and rule description

UsingMesssage , Comment or Description tags we can easily and precisely describe
our rule.Sig_Source contains information about source of translatiantiie particular
signature.

Rule analyzed above has been created as a restdhsfation from Snort IDS. Next it was
translated to Shoki and Dragon rules:

Snort:

alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg: "DDOS TFN
server response"”; icmp_id:123; icmp_seq:0; itype:0;

content:"shell bound to port"; reference:arachnids, 182;

classtype:attempted-dos; sid:238; rev:6;)

Dragon:

I DFB 100 01DS182:ddos_ddos-tfn-server-response
shell/2f20bound/2f20to/2f20port

Shoki:

icmp and (icmp[4:2] == 123) 65536 SEARCH IDS182 ddo s_ddos-tfn-
server-response 'shell bound to port' ALL 1 NULL

Diagram7 Equivalent rulesfor Snort, Shoki and Dragon

As you can see, rules used in IDS are much shibraer CIDSS. But it is the only one
advantage. They are not human-readable, and weake a mistake during creating or
modifying signatures. On shown example we can saglgm with manual translations from
various IDS: this rules are not comparable, butaos the same information! For example,
we want to do an external audit. If people whohde audit know well Snort system, he will
probably have troubles with Dragon or Shoki IDSe&we have experts which know all of
this systems, probability to make a mistake iseasmg significantly during comparison IDS

rules used in a company with schemas written foersystems. Doing an audit will be
possible only when have sample rules for diffef®x3.

Signatures and sessions

Currently the only one IDS that support stateflgstis Snort. Under the term of stateful
sessions we understand that packets processedteynsgre considered in context of packets
previously processed. Snort interpretation of ftidteles is limited to protocols of transport
layer (UDP or TCP). Using session we are able szrilee more complex types of attacks.
Such attacks like port scanning can be invisibid@& that doesn't take session state in
consideration. Snort will have problems with datecof slow port scanning from different
sources. It cannot analyze packet flow that dossart from transport protocol (e.g. malicious
routing modification attempts).

In Snort multiple rules can be related throughisesstate. Rules are related by operations
made on particular session variables (checkingnaodifying a value of variables)

CIDSS is able to define signatures containing sessin wide meaning — it considers state of
packet flows of any protocol. So, it is also pokstb translate Snort stateful signature to
CIDSS signature.

On diagram8 we can see example rule contaiSeggion tag and considers session state.
On this example we would like to explain how tagsaibe above work. Lets imagine that
attacker is trying to make a DoS attempt using bBoft RPC service. He is sending multiple
requests to make system vulnerable. It takes asteayresources. System after detecting
attack attempt should correctly react.

Source_IP andDestination_IP tags contain$EXTERNAL_NETand$HOME_NET
values that are specific values defined in IDS. HaSe possibility to define in configuration
files or in system environment such values, so GxScapable to use them too. In our
example we use aldtattern andPat_Logic tags.

We will explain meaning of these tags in exampbefrdiagram8. First tag iBession

section isSession_End , which describes conditions for ending sessiossi®a ends after
60 seconds aSession_Timeout defines, or after 20 packets from start of sesgdier
session end a packet counter is zeroed so in @de@0 packets must match the rule
(conditions defined in signature). Moreover, pasketsession must match additional

conditions defined b$ession_Case (contained irSession_Instructions). First
tag Direction) defines direction of packets counted into sessimom source (host
starting session) to destination. Condition desctiinCase_State Condition applies

to session variables. In this case variable dcasyactivator.bind.call.attempt must be set by
another signature.
To modify variable values we can uSase_State_Instructions tag.

<Si gnat ur e sid ="2494">
<Enabl ed>true </Enabl ed>
<Si g_source>Snort </Si g_source>
<Descri pti on>NETBIOS DCEPRC ORPCThis request flood
attempt </Descri pti on>
<Action>alert </Action>
<Prot ocol s><Protocol Type="tcp ">
<TCP_St at e>established </TCP_St ate>
</Pr ot ocol > </Pr ot ocol s>
<Sour ces><Source src_id ="1">
<Sour ce_| P>$EXTERNAL_NE¥%/Sour ce_| P>
<Sour ce_Port >any </Sour ce_Port >
</Sour ce></Sour ces >
<Destinations><Destinationdst id ="1">
<Desti nati on_| P>$HOME_NE¥/Desti nati on_| P>
<Desti nati on_Port >135 </Destination_Port >
</Desti nati on></Desti nati ons>
<Patternsid ="1">
<Pattern pat id ="1">
<Pattern_Type>hex </Pattern_Type>
<Pattern_Content >05</Pat t er n_Cont ent >
<Pattern_ Wthin>1l</Pattern_Wthin>
</Pattern>
<Pattern pat id ="2">
<Pattern_Type>hex </Pattern_Type>
<Pattern_Content >00</Pat t er n_Cont ent >
<Pattern Wthin>1l</Pattern_Wthin>
<Pattern_Di stance>1</Pattern_Di stance>
<Pattern_Byte_test ><![CDATA[L, & 1, 0, relative]]></Pattern_Byte_test>
</Pattern>
<Patternpat id ="3">...</Pattern>
<Patternpat id ="4">...</Pattern>
<Pat _Logi c>1 AND 2 AND 3AND 4 </Pat_Logi c>
</Patterns>
<Message>NETBIOS DCEPRC ORPCThis request flood attempt </Message>
<Sessi on>
<Sessi on_End>
<Sessi on_Ti meout >60s </Sessi on_Ti neout >
<Sessi on_Pckt Count >20</Sessi on_Pckt Count >
<Sessi on_Threshol d>
<Sessi on_Threshol d_Type>both </Sessi on_Threshol d_Type>
<Sessi on_Threshol d _Track>dst </Sessi on_Threshol d_Track>
</Sessi on_Threshol d>
</Sessi on_End>
<Session_lnstructions>
<Sessi on_Case>
<Direction>sd</Directi on>
<Case_State Condition>
<l sset _Var var ="dce.isystemactivator.bind.call.attempt "/>
</Case_State_ Condition>
</Sessi on_Case>
</Sessi on_l nstructions>
</Sessi on>
</Si gnat ure>

Diagram8 CIDSS stateful signature

Snort rule shown below is equal with CIDSS rularir(Diagram8):

alert tcp SEXTERNAL_NET any -> $HOME_NET 135

(msg:"NETBIOS DCEPRC ORPCThis request flood attempt "
flow:to_server,established; content:"|05|"; within: 1;
content:"|00|"; within:1; distance:1; byte_test:1,& ,1,0,relative;
content:"|05|"; within:1; distance:21; content:"MEO W,
flowbits:isset,dce.isystemactivator.bind.call.attem pt;
threshold:type both, track by_dst, count 20, second s 60;
reference:cve,CAN-2003-0813;
reference:url,www.microsoft.com/technet/security/bu lletin/MS04-
011.mspx; classtype:misc - attack; sid:2494; rev:3;)

Diagram9 Snort stateful signature

Summary

Signatures standard should be used for improvingrig of information systems. CIDSS
may be used by IT administrators for translatingyimg, analyzing different signatures from
various manufacturers. There are many other pdisigfi CIDSS makes easier to develop
analysis and audit tools. Moreover it is possibldeévelop knowledge bases containing
precise and easy-to-implement vulnerabilities infation expressed as signatures in common
format. Such databases could be maintained by erakmt developers. They could sell
access to most recent and tested signatures sktedieclients need. Other possibility of use
of CIDSS is to make it standard language for sfting (intelligent) systems used in
different categories of information security. Isig special usages, because CIDSS is
currently language that has more functionality fri&nort.

[1] Internet Engineering Task Force, Internet Dr&®mmon Intrusion Detection Signatures
Standardhttp://www.ietf.org

[2] IDS Signature Translator (200%ittp://sigtranslator.sourceforge.net

[3] Snort User Manuahttp://www.snort.org/docs/

